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In	the	last	lecture,	I	introduced	the	capacitor	as	an	electronic	component	that	
stores	charges.		I	then	consider	the	mechanism	of	charging	and	discharging	a	
capacitor	using	a	DC	source	and	through	a	resistor.	

	
In	this	lecture,	we	will	consider	how	a	capacitor	behaves	in	a	circuit	when	the	
source	signal	is	not	a	dc,	but	an	ac.		To	be	specific,	we	will	consider	how	
capacitor	affects	sine	or	cosine	wave	signals.	
	

We	will	also	introduce	a	characteristic	of	a	capacitor	known	as	reaction,	and	
its	related	quantity	called	impedance,	which	is	similar	to	(but	different	from)	
resistance	in	a	resistor.	
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It	is	helpful	to	think	of	electronic	systems	in	two	different	“states”.		If	you	
drive	a	system	with	a	constant	source	(such	as	a	battery)	or	a	periodic	signal	
(such	as	a	sine	wave),	eventually	the	voltage	and	current	in	the	system	to	
settle	down	to	a	state	which	will	sort	of	last	for	ever!		We	call	this	the	
“steady	state”.	

However	if	you	suddenly	connect	the	system	to	a	battery	(such	as	closing	a	
switch)	,	then	the	system	will	take	some	time	to	adapt	to	this	sudden		
change.		During	this	period,	we	call	the	system	to	be	in	“transient	state”.	
The	total	response	of	a	system	is	a	combination	of	the	response	to	these	two	
states	added	together.	
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We	can	combine	both	cases	into	a	general	theorem	relating	initial	and	final	
values.	This	only	applies	to	systems	that	are	FIRST-ORDER	and	linear.	
	

The	exponential	equations	have	Vi	and	Ii,	which	are	the	initial	values,	and	Vf 
and	If,	which	are	final	values.		The	final	values	are	the	steady	state	values.		
The	exponential	governs	the	transient	response	of	the	system.	

	
When	we	add	the	steady	state	to	the	transient,	we	get	the	total	response	of	
the	system.	
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Here	is	an	example	with	a	RC	circuit	drive	by	a	step	function	from	5V	to	10V.	
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Time	constant	has	significant	impact	on	shape	of	pulses	and	pulse	train	
passing	through	a	system.		This	is	important	to	appreciate	because	digital	
signals	are	affected	by	RC	effects	in	real	electronic	circuits.		You	will	be	
experimenting	with	these	circuits	when	they	are	driven	by	digital	(CLOCK)	
signals	in	Lab	2.	
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Let us revisit sine and cosine waves.  A sine wave can be 
completely defined with three parameters Vp, the peak 
voltage (or amplitude), its frequency w in radians/second or f 
in cycles/second (Hz), and the phase angle Φ.   
 
Cosine waves are the same as sine waves, except that cosine 
wave is 90 degrees or π/2 radians advance in phase.  That is: 
 
 
It is worth remembering that one cycle of a sine or cosine 
wave has a phase angle value of 2π radians or 360 degrees. 
 
 
 

v(t) =Vp sin(2π ft +φ) =Vp cos(2π ft +φ +
π
2
)
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Resistors	obey	Ohm’s	Law	–	the	ratio	of	voltage	to	current	VR/IR through	a	resistor	
is	a	constant	no	matter	what	is	the	frequency	of	the	source	signal.	
	

This	is	not	true	with	a	capacitor.		As	shown	in	the	slide,	the	ratio	VC/IC when	driven	
by	a	sine	wave	source	results	in	a	current	that	is	a	cosine	wave.	
	

It	can	be	seen	that	the	ratio	of	VC/IC  is	dependent	on	the	signal	frequency	ω.		This	
ratio	(capacitor’s	version	of	resistance)	is	inversely	proportional	to	the	signal	
frequency.	When	ω	=	0,	the	ratio	is	infinite;	when	ω is	very	large	(infinity),	the	ratio	
approaches	zero.	
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This	is	a	partial	repeat	of	Topic	6	slide	6.		Remember,	with	a	sine	wave	voltage	
source	applied	to	a	resistor,	the	current	is	also	a	sine	wave	in	phase	with	the	
voltage.		Therefore	when	multiply	the	two	together	to	get	the	power	dissipation,	P	=	
V	x	I,	we	have	the	function	that	is	entirely	positive.	
	
The	physical	interpretation	of	this	observation	is	that	although	a	sine	wave	has	
positive	and	negative	part	in	one	cycle,	the	power	is	always	positive.			Therefore	the	
resistor	dissipates	(or	consumes)	energy	throughout	the	entire	cycle	of	the	signal.	
	
	
	



9 

Now	consider	the	capacitor	voltage	and	current	plotted	on	the	same	axis	in	time.		
The	voltage	Vc(t)	is	clearly	a	sine	wave.		The	current	Ic(t)	is	a	cosine	wave.			
	

In	a	resistor,	the	power	dissipated	is	the	produce	of	V	and	I.		So	we	should	ask	the	
question,	what	is	the	power	dissipated	by	the	capacitor?	
	

Let	us	calculate	the	instantaneous	power	“dissipated”	by	the	capacitor	by	finding	
the	produce	of	Vc(t)	and	Ic(t).	This	is	plotted	as	the	reactive	power	curve	in	the	
slide.		
	

Unlike	the	power	curve	we	saw	for	a	resistor,	the	power	curve	for	a	capacitor	
spends	half	the	cycle	in	the	+ve	part,	and	half	of	the	cycle	in	the	–ve	part	of	the	
power	y-axis.		That	means	on	half	the	time,	the	capacitor	is	using	energy,	and	on	the	
other	half	of	the	time,	it	is	giving	the	energy	back!		On	average,	there	is	zero	energy	
dissipated.	The	capacitor	simply	stores	the	energy	and	return	it	later.	
	

This	is	unlike	a	resistor,	which	only	DISSIPATES	energy.		That	why	the	name	given	
the	ratio		VC/IC is	reactance	(as	suppose	to	resistance).		The	power	curve	is	known	
as	reactive	power.	
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Let	us	for	the	moment	just	consider	ratio	of	the	peak	magnitudes	of	the	
voltage	and	the	current	in	the	three	cases.	
	

The	ratio	is	simply	R	for	resistor.	

	
The	ratio	is	1/ωC	for	capacitor.	
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For	capacitors	and	inductors,	this	ratio	of	peak	voltage	over	peak	current	is	
frequency	dependent.		They	are	called	reactance.	
	

Both	resistance	and	reactance	are	measures	of	how	the	components	oppose	
the	flow	of	current.		The	unit	of	reactance	is	the	same	as	that	of	resistance	–	
in	ohms.	

	
We	use	the	symbol	X	to	represent	reactance	here.	
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When	we	define	reactance,	we	only	consider	peak	voltage	and	current	in	a	
component	because	we	only	use	the	maximum	(or	peak)	voltage	and	current	in	
the	calculation.		However,	the	peak	current	and	voltage	in	a	capacitor	happens	at	
different	times.		In	fact,	we	have	seen	that	the	current	in	a	capacitor	(when	a	sine	
wave	is	applied)	always	LEADS	the	voltage	by	90	degrees.		Therefore,	how	can	we	
use	reactance	in	nodal	analysis?		The	answer	is	to	use	complex	number	
representation.	
	

We	define	here	a	new	quantity,	the	IMPEDANCE	of	a	capacitor	as	the	reactance,	
but	add	the	complex	variable	I	in	the	denominator.	So	the	impedance	Zc	is:	
	

	

However	using	i	is	very	confusion	for	electrical	engineers.		The	symbol	“i”	also	
represents	current.	Therefore	we	electrical	engineers,	unlike	mathematicians,	
always	use	j	to	represent	the	imaginary	part	of	a	complex	number.			
	

	

	

ZC =
1
iωC

ZC =
1
jωC
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Reactive	components	are	things	like	capacitors	and	inductors.		Their	
reactance	(equivalent	to	resistance	in	resistors)	are	frequency	dependent.		
This	frequency	dependency	turns	out	to	be	very	useful	in	building	interesting	
circuits,	e.g.	filters	which	provide	frequency	selectivity.	
	

Before	we	look	at	these	circuits,	I	want	to	introduce	to	idea	of	two	port	
network	and	gain.	
	

A	two-port	network	as	an	input	port	to	which	we	apply	stimulus	Vi.	There	is	
an	output	port	that	provides	a	signal	VO.		The	ratio	VO/VI	is	the	voltage	gain.	
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Using	complex	number	algebraic	methods,	we	can	easily	work	out	the	
voltage	gain	of	this	simple	RC	network.		Note	that	the	gain	equation	is	
frequency	dependent	(i.e.	it	is	a	function	of	ω).	

	
The	relationship	between	output	Y	and	input	X	as	a	function	of	signal	
frequency	ω	is	known	as	frequency	response.	

	
From	the	gain	equation,	we	can	compute	the	magnitude	of	the	gain	as	a	
function	of	frequency.		We	can	also	plot	the	phase	difference	(output	relative	
to	input)	as	a	function	of	frequency.		The	former	is	known	as	the	magnitude	
(or	amplitude)	response.	The	latter	is	known	as	the	phase	response.	
	

In	the	literature,	graphs	showing	gain	magnitude	and	phase	vs	frequency	is	
also	known	as	“Bode	diagrams”.	Don’t	worry,	it	is	just	a	name!	It	is	more	
important	to	know	what	it	means:	it	is	a	plot	of	gain	vs	frequency	of	a	circuit.	
	

On	this	course,	we	will	mainly	focus	on	the	magnitude	response,	and	we	will	
ignore	the	phase	response	most	of	the	time.	



15 

Here	is	a	circuit	with	R	=	10k	and	C	=	1	microfarad,	and	how	the	gain	
magnitude	and	phase	changes	with	frequency.		Note	that	at	w	=	1/RC,	the	
gain	is	0.71	(or	1/√2).		This	will	come	up	again	later.	
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Percentage	differences	are	often	more	important	than	absolute	differences.		
Therefore	it	is	often	more	revealing	if	we	plot	frequency	and	gain	in	
logarithmic	scales.			

For	voltages,	we	normally	calculate	the	gain	in	terms	of	decibels	(dB)	as	
defined	here.	

Remember	that	dB	is	dimensionless	–	it	is	a	scaling,	not	a	unit.	

The	definition	of	Gain	in	decibel	is:	
	

	

	
When	expressing	power	gain,	the	formula	is	different	–	the	constant	before	
the	log	is	10x	not	20x.	
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I	now	want	to	show	you	how	to	make	informed	guess	to	the	magnitude	
response	of	a	circuit	from	its	gain	equation	without	having	to	do	any	
calculations.			This	gain	equation	is	frequency	dependent	and	is	often	written	
as	H(jω).		Since	it	is	the	ratio	of	output	voltage	to	input	voltage	(or	output	
current	to	input	current),	it	is	called	a	TRANSFER	FUNCTION:	

	Y(jω)	=	H(jω)	X(jω)	
Now	consider	the	function:				H(jω)	=	a	x	jω	+	b.	

If	the	magnitude	|aω|	is	much	small	than	|b|,	|H(jω)|	è	|b|.		

If	the	magnitude	|aω|	is	much	larger	than	|b|,	|H(jω)|	è	|aω|.		
Let	us	take	the	RC	circuit	as	shown	here.		For	low	frequencies,	the	magnitude	
is	1	or	0	dB.	

For	high	frequencies	the	magnitude	drops	linearly	with	ω	(i.e.	it	is	
proportional	to	ω-1.		So,	in	terms	of	dBs,	over	one	decade	(factor	of	10),	it	
falls	by	20dB.		The	slope	of	the	line	at	high	frequency	is	therefore	-20dB/
decade.	
How	high	must	the	frequency	be	before	it	is	called	“high”?	The	intersection	
of	these	two	line	is	at	ω	=	1/RC.		This	is	known	as	the	corner	frequency.	

If	you	use	Hz	for	frequency,	then	f	=	1/2π	RC.	
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Let	us	take	another	look	at	the	simple	RC	network.		Remember	that	the	
impedance	of	a	capacitor	is	inversely	proportional	to	frequency.		Therefore	at	
low	frequency,	a	capacitor	appears	as	open-circuit.		At	high	frequency,	it	
appears	as	short-circuit.	
	

Using	the	principle	of	voltage	divider,	this	circuit	will	give	you	a	low	output	at	
high	frequency	(ZC	is	small),	and	does	not	attenuate	the	signal	at	low	
frequency	(ZC	is	large).		We	call	this	a	low	pass	filter	(LF).	
	

The	transfer	function	H(jω)	=	Y/X	has	only	one	jw	term	in	the	denominator.		
We	call	this	first	order	filter.	
	

The	order	of	a	filter	is	the	highest	power	of	the	(jω)		term	in	the	denominator	
of	the	transfer	function	(Gain	function).	
	

A	first	order	filter	will	have	a	roll-off	(i.e.	rate	of	drop	in	gain)	of	-20dB/
decade.	

	

An	nth	order	filter	will	have	a	roll-off	of	-20n	dB/decade.	
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If	you	swap	the	RC	and	to	form	a	CR	circuit	as	shown,	we	have	a	magnitude	
response	where	at	high	frequency,	C	appears	to	be	short	circuit	and	Y=X.		
However	C	blocks	any	low	frequency	and	DC	signals.		Therefore	we	now	have	
a	high	pass	filter.	
	

Again	you	can	work	out	the	straight	line	approximation	with	the	gain	
equation	(transfer	function).	


